Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Math Biosci Eng ; 20(6): 11353-11366, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: covidwho-2321588

RESUMO

Before reopening society in December 2022, China had not achieved sufficiently high vaccination coverage among people aged 80 years and older, who are vulnerable to severe infection and death owing to COVID-19. Suddenly ending the zero-COVID policy was anticipated to lead to substantial mortality. To investigate the mortality impact of COVID-19, we devised an age-dependent transmission model to derive a final size equation, permitting calculation of the expected cumulative incidence. Using an age-specific contact matrix and published estimates of vaccine effectiveness, final size was computed as a function of the basic reproduction number, R0. We also examined hypothetical scenarios in which third-dose vaccination coverage was increased in advance of the epidemic, and also in which mRNA vaccine was used instead of inactivated vaccines. Without additional vaccination, the final size model indicated that a total of 1.4 million deaths (half of which were among people aged 80 years and older) were anticipated with an assumed R0 of 3.4. A 10% increase in third-dose coverage would prevent 30,948, 24,106, and 16,367 deaths, with an assumed second-dose effectiveness of 0%, 10%, and 20%, respectively. With mRNA vaccine, the mortality impact would have been reduced to 1.1 million deaths. The experience of reopening in China indicates the critical importance of balancing pharmaceutical and non-pharmaceutical interventions. Ensuring sufficiently high vaccination coverage is vital in advance of policy changes.


Assuntos
COVID-19 , Epidemias , Humanos , China/epidemiologia , Número Básico de Reprodução , Vacinação , Vacinas de mRNA
2.
Influenza ; 23(4):261-268, 2022.
Artigo em Japonês | Ichushi | ID: covidwho-2301169
3.
Sci Rep ; 13(1): 6679, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2291183

RESUMO

Japanese government initially enforced restrictions on outpatient attendances among febrile individuals suspected of having COVID-19, asking everyone to remain at home for at least 4 days from the onset of fever. This restriction was cancelled on 8 May 2020, and a new antiviral, remdesivir, was approved from 7 May 2020. To investigate how this policy change influenced the prognosis of people with COVID-19, we estimated the case fatality risk as a function of the date of illness onset from April to June 2020. We used an interrupted time-series analysis model with an intervention date of 8 May 2020, and estimated time-dependent case fatality risk by age group. The case fatality risk showed a decreasing trend in all groups, and models were favored accounting for an abrupt causal effect, i.e., immediate decline in fatality risk. The trend was estimated at - 1.1% (95% CI [confidence interval]: - 3.9, 3.0) among people aged 60-69 years, - 7.2% (95% CI - 11.2, - 2.4) among those aged 70-79 years, - 7.4% (95% CI - 14.2, 0.2) among those aged 80-89 years, and - 10.3% (95% CI - 21.1, 2.7) among those aged 90 and over. Early diagnosis and treatment greatly contributed to reducing the case fatality risk.


Assuntos
COVID-19 , Humanos , Japão , Prognóstico , Diagnóstico Precoce , Análise de Séries Temporais Interrompida , Teste para COVID-19
4.
Lancet Reg Health West Pac ; 3: 100016, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-2287920

RESUMO

BACKGROUND: On April 7, 2020, the Japanese government declared a state of emergency regarding the novel coronavirus (COVID-19). Given the nation-wide spread of the coronavirus in major Japanese cities and the rapid increase in the number of cases with untraceable infection routes, large-scale monitoring for capturing the current epidemiological situation of COVID-19 in Japan is urgently required. METHODS: A chatbot-based healthcare system named COOPERA (COvid-19: Operation for Personalized Empowerment to Render smart prevention And AN care seeking) was developed to surveil the Japanese epidemiological situation in real-time. COOPERA asked questions regarding personal information, location, preventive actions, COVID-19 related symptoms and their residence. Empirical Bayes estimates of the age-sex-standardized incidence rate and disease mapping approach using scan statistics were utilized to identify the geographical distribution of the symptoms in Tokyo and their spatial correlation r with the identified COVID-19 cases. FINDINGS: We analyzed 353,010 participants from Tokyo recruited from 27th March to 6th April 2020. The mean (SD) age of participants was 42.7 (12.3), and 63.4%, 36.4% or 0.2% were female, male, or others, respectively. 95.6% of participants had no subjective symptoms. We identified several geographical clusters with high spatial correlation (r = 0.9), especially in downtown areas in central Tokyo such as Shibuya and Shinjuku. INTERPRETATION: With the global spread of COVID-19, medical resources are being depleted. A new system to monitor the epidemiological situation, COOPERA, can provide insights to assist political decision to tackle the epidemic. In addition, given that Japan has not had a strong lockdown policy to weaken the spread of the infection, our result would be useful for preparing for the second wave in other countries during the next flu season without a strong lockdown. FUNDING: The present work was supported in part by a grant from the Ministry of Health, Labour and Welfare of Japan (H29-Gantaisaku-ippan-009).

5.
Sci Rep ; 13(1): 5540, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2288635

RESUMO

The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , Japão/epidemiologia , Estudos Transversais , SARS-CoV-2
6.
Viruses ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2236473

RESUMO

The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses' overdispersed nature, a quantitative assessment of the risk of clustering has yet to be sufficiently presented. Using systematically collected cluster surveillance data for coronavirus disease 2019 (COVID-19) from June 2020 to June 2021 in Japan, we estimated the activity-dependent risk of clustering in 23 establishment types. The analysis indicated that elderly care facilities, welfare facilities for people with disabilities, and hospitals had the highest risk of clustering, with 4.65 (95% confidence interval [CI]: 4.43-4.87), 2.99 (2.59-3.46), and 2.00 (1.88-2.12) cluster reports per million event users, respectively. Risks in educational settings were higher overall among older age groups, potentially being affected by activities with close and uncontrollable contact during extracurricular hours. In dining settings, drinking and singing increased the risk by 10- to 70-fold compared with regular eating settings. The comprehensive analysis of the COVID-19 cluster records provides an additional scientific basis for the design of customized interventions.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2 , Análise por Conglomerados , Hospitais , Japão/epidemiologia
7.
Epidemiol Infect ; 150: e197, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2211854

RESUMO

Coronavirus disease 2019 (COVID-19) has been described as having an overdispersed offspring distribution, i.e. high variation in the number of secondary transmissions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) per single primary COVID-19 case. Accordingly, countermeasures focused on high-risk settings and contact tracing could efficiently reduce secondary transmissions. However, as variants of concern with elevated transmissibility continue to emerge, controlling COVID-19 with such focused approaches has become difficult. It is vital to quantify temporal variations in the offspring distribution dispersibility. Here, we investigated offspring distributions for periods when the ancestral variant was still dominant (summer, 2020; wave 2) and when Alpha variant (B.1.1.7) was prevailing (spring, 2021; wave 4). The dispersion parameter (k) was estimated by analysing contact tracing data and fitting a negative binomial distribution to empirically observed offspring distributions from Nagano, Japan. The offspring distribution was less dispersed in wave 4 (k = 0.32; 95% confidence interval (CI) 0.24-0.43) than in wave 2 (k = 0.21 (95% CI 0.13-0.36)). A high proportion of household transmission was observed in wave 4, although the proportion of secondary transmissions generating more than five secondary cases did not vary over time. With this decreased variation, the effectiveness of risk group-focused interventions may be diminished.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Japão/epidemiologia , Busca de Comunicante
8.
Math Biosci Eng ; 20(2): 3661-3676, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2201224

RESUMO

The purpose of the present study was to develop a transmission model of COVID-19 cases with and without a contact history to understand the meaning of the proportion of infected individuals with a contact history over time. We extracted epidemiological information regarding the proportion of coronavirus disease 2019 (COVID-19) cases with a contact history and analyzed incidence data stratified by the presence of a contact history in Osaka from January 15 to June 30, 2020. To clarify the relationship between transmission dynamics and cases with a contact history, we used a bivariate renewal process model to describe transmission among cases with and without a contact history. We quantified the next-generation matrix as a function of time; thus, the instantaneous (effective) reproduction number was calculated for different periods of the epidemic wave. We objectively interpreted the estimated next-generation matrix and replicated the proportion of cases with a contact p(t) over time, and we examined the relevance to the reproduction number. We found that p(t) does not take either the maximum or minimum value at a threshold level of transmission with R(t)=1.0. With R(t) < 1 (subcritical level), p(t) was a decreasing function of R(t). Qualitatively, the minimum p(t) was seen in the domain with R(t) > 1. An important future implication for use of the proposed model is to monitor the success of ongoing contact tracing practice. A decreasing signal of p(t) reflects the increasing difficulty of contact tracing. The present study findings indicate that monitoring p(t) would be a useful addition to surveillance.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , Japão , Busca de Comunicante
9.
Math Biosci Eng ; 20(2): 2530-2543, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2201219

RESUMO

With continuing emergence of new SARS-CoV-2 variants, understanding the proportion of the population protected against infection is crucial for public health risk assessment and decision-making and so that the general public can take preventive measures. We aimed to estimate the protection against symptomatic illness caused by SARS-CoV-2 Omicron variants BA.4 and BA.5 elicited by vaccination against and natural infection with other SARS-CoV-2 Omicron subvariants. We used a logistic model to define the protection rate against symptomatic infection caused by BA.1 and BA.2 as a function of neutralizing antibody titer values. Applying the quantified relationships to BA.4 and BA.5 using two different methods, the estimated protection rate against BA.4 and BA.5 was 11.3% (95% confidence interval [CI]: 0.01-25.4) (method 1) and 12.9% (95% CI: 8.8-18.0) (method 2) at 6 months after a second dose of BNT162b2 vaccine, 44.3% (95% CI: 20.0-59.3) (method 1) and 47.3% (95% CI: 34.1-60.6) (method 2) at 2 weeks after a third BNT162b2 dose, and 52.3% (95% CI: 25.1-69.2) (method 1) and 54.9% (95% CI: 37.6-71.4) (method 2) during the convalescent phase after infection with BA.1 and BA.2, respectively. Our study indicates that the protection rate against BA.4 and BA.5 are significantly lower compared with those against previous variants and may lead to substantial morbidity, and overall estimates were consistent with empirical reports. Our simple yet practical models enable prompt assessment of public health impacts posed by new SARS-CoV-2 variants using small sample-size neutralization titer data to support public health decisions in urgent situations.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , SARS-CoV-2 , Vacinação , Anticorpos Antivirais
10.
J Clin Med ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2200426

RESUMO

Managing inflammatory bowel disease (IBD) is a major challenge for physicians and patients during the COVID-19 pandemic. To understand the impact of the pandemic on patient behaviors and disruptions in medical care, we used a combination of population-based modeling, system dynamics simulation, and linear optimization. Synthetic IBD populations in Tokyo and Hokkaido were created by localizing an existing US-based synthetic IBD population using data from the Ministry of Health, Labor, and Welfare in Japan. A clinical pathway of IBD-specific disease progression was constructed and calibrated using longitudinal claims data from JMDC Inc for patients with IBD before and during the COVID-19 pandemic. Key points considered for disruptions in patient behavior (demand) and medical care (supply) were diagnosis of new patients, clinic visits for new patients seeking care and diagnosed patients receiving continuous care, number of procedures, and the interval between procedures or biologic prescriptions. COVID-19 had a large initial impact and subsequent smaller impacts on demand and supply despite higher infection rates. Our population model (Behavior Predictor) and patient treatment simulation model (Demand Simulator) represent the dynamics of clinical care demand among patients with IBD in Japan, both in recapitulating historical demand curves and simulating future demand during disruption scenarios, such as pandemic, earthquake, and economic crisis.

11.
BMC Infect Dis ; 22(1): 933, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2162315

RESUMO

BACKGROUND: It has been descriptively argued that the case fatality risk (CFR) of coronavirus disease (COVID-19) is elevated when medical services are overwhelmed. The relationship between CFR and pressure on health-care services should thus be epidemiologically explored to account for potential epidemiological biases. The purpose of the present study was to estimate the age-dependent CFR in Tokyo and Osaka over time, investigating the impact of caseload demand on the risk of death. METHODS: We estimated the time-dependent CFR, accounting for time delay from diagnosis to death. To this end, we first determined the time distribution from diagnosis to death, allowing variations in the delay over time. We then assessed the age-dependent CFR in Tokyo and Osaka. In Osaka, the risk of intensive care unit (ICU) admission was also estimated. RESULTS: The CFR was highest among individuals aged 80 years and older and during the first epidemic wave from February to June 2020, estimated as 25.4% (95% confidence interval [CI] 21.1 to 29.6) and 27.9% (95% CI 20.6 to 36.1) in Tokyo and Osaka, respectively. During the fourth wave of infection (caused by the Alpha variant) in Osaka the CFR among the 70s and ≥ 80s age groups was, respectively, 2.3 and 1.5 times greater than in Tokyo. Conversely, despite the surge in hospitalizations, the risk of ICU admission among those aged 80 and older in Osaka decreased. Such time-dependent variation in the CFR was not seen among younger patients < 70 years old. With the Omicron variant, the CFR among the 80s and older in Tokyo and Osaka was 3.2% (95% CI 3.0 to 3.5) and 2.9% (95% CI 2.7 to 3.1), respectively. CONCLUSION: We found that without substantial control, the CFR can increase when a surge in cases occurs with an identifiable elevation in risk-especially among older people. Because active treatment options including admission to ICU cannot be offered to the elderly with an overwhelmed medical service, the CFR value can potentially double compared with that in other areas of health care under less pressure.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Número de Leitos em Hospital , Unidades de Terapia Intensiva
12.
J Theor Biol ; 559: 111384, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2159361

RESUMO

Coronavirus disease 2019 (COVID-19) booster vaccination has been implemented globally in the midst of surges in infection due to the Delta and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The objective of the present study was to present a framework to estimate the proportion of the population that is immune to symptomatic SARS-CoV-2 infection with the Omicron variant (immune proportion) in Japan, considering the waning of immunity resulting from vaccination and naturally acquired infection. We quantified the decay rate of immunity against symptomatic infection with Omicron conferred by the second and third doses of COVID-19 vaccine. We estimated the current and future vaccination coverage for the second and third vaccine doses from February 17, 2021 to August 1, 2022 and used data on the confirmed COVID-19 incidence from February 17, 2021 to April 10, 2022. From this information, we estimated the age-specific immune proportion over the period from February 17, 2021 to August 1, 2022. Vaccine-induced immunity, conferred by the second vaccine dose in particular, was estimated to rapidly wane. There were substantial variations in the estimated immune proportion by age group because each age cohort experienced different vaccination rollout timing and speed as well as a different infection risk. Such variations collectively contributed to heterogeneous immune landscape trajectories over time and age. The resulting prediction of the proportion of the population that is immune to symptomatic SARS-CoV-2 infection could aid decision-making on when and for whom another round of booster vaccination should be considered. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Japão/epidemiologia , Vacinação
13.
Epidemics ; 41: 100655, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2130795

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2) infections have been associated with substantial presymptomatic transmission, which occurs when the generation interval-the time between infection of an individual with a pathogen and transmission of the pathogen to another individual-is shorter than the incubation period-the time between infection and symptom onset. We collected a dataset of 257 SARS-CoV-2 transmission pairs in Japan during 2020 and jointly estimated the mean incubation period of infectors (4.8 days, 95 % CrI: 4.4-5.1 days), mean generation interval to when they infect others (4.3 days, 95 % credible interval [CrI]: 4.0-4.7 days), and the correlation (Kendall's tau: 0.5, 95 % CrI: 0.4-0.6) between these two epidemiological parameters. Our finding of a positive correlation and mean generation interval shorter than the mean infector incubation period indicates ample infectiousness before symptom onset and suggests that reliance on isolation of symptomatic COVID-19 cases as a focal point of control efforts is insufficient to address the challenges posed by SARS-CoV-2 transmission dynamics.

14.
Front Med (Lausanne) ; 9: 937732, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2099171

RESUMO

Background: Public health and social measures (PHSM) against COVID-19 in Japan involve requesting the public to voluntarily reduce social contact; these measures are not legally binding. The effectiveness of such PHSM has been questioned with emergence of the SARS-CoV-2 Alpha variant (B.1.1.7), which exhibited elevated transmissibility. Materials and Methods: We investigated the epidemic dynamics during the fourth epidemic wave in Japan from March to June 2021 involving pre-emergency measures and declaration of a state of emergency (SoE). We estimated the effective reproduction number (R t ) before and after these interventions, and then analyzed the relationship between lower R t values and each PHSM. Results: With implementation of pre-emergency measures (PEM) in 16 prefectures, the R t was estimated to be < 1 in six prefectures; its average relative reduction ranged from 2 to 19%. During the SoE, 8 of 10 prefectures had an estimated R t < 1, and the average relative reduction was 26%-39%. No single intervention was identified that uniquely resulted in an R t value < 1. Conclusion: An SoE can substantially reduce the R t and may be required to curb a surge in cases caused by future SARS-CoV-2 variants of concern with elevated transmissibility. More customized interventions did not reduce the R t value to < 1 in this study, but that may be partly attributable to the greater transmissibility of the Alpha variant.

15.
BMC Infect Dis ; 22(1): 808, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2098321

RESUMO

BACKGROUND: In 2020, the Japanese government implemented first of two Go To Travel campaigns to promote the tourism sector as well as eating and drinking establishments, especially in remote areas. The present study aimed to explore the relationship between enhanced travel and geographic propagation of COVID-19 across Japan, focusing on the second campaign with nationwide large-scale economic boost in 2020. METHODS: We carried out an interrupted time-series analysis to identify the possible cause-outcome relationship between the Go To Travel campaign and the spread of infection to nonurban areas in Japan. Specifically, we counted the number of prefectures that experienced a weekly incidence of three, five, and seven COVID-19 cases or more per 100,000 population, and we compared the rate of change before and after the campaign. RESULTS: Three threshold values and three different models identified an increasing number of prefectures above the threshold, indicating that the inter-prefectural spread intensified following the launch of the second Go To Travel campaign from October 1st, 2020. The simplest model that accounted for an increase in the rate of change only provided the best fit. We estimated that 0.24 (95% confidence interval 0.15 to 0.34) additional prefectures newly exceeded five COVID-19 cases per 100,000 population per week during the second campaign. CONCLUSIONS: The enhanced movement resulting from the Go To Travel campaign facilitated spatial spread of COVID-19 from urban to nonurban locations, where health-care capacity may have been limited.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Japão/epidemiologia , Viagem , Número de Leitos em Hospital , Incidência
16.
Math Biosci Eng ; 19(12): 13137-13151, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: covidwho-2055536

RESUMO

The basic reproduction number, $ R_0 $, plays a central role in measuring the transmissibility of an infectious disease, and it thus acts as the fundamental index for planning control strategies. In the present study, we apply a branching process model to meticulously observed contact tracing data from Wakayama Prefecture, Japan, obtained in early 2020 and mid-2021. This allows us to efficiently estimate $ R_0 $ and the dispersion parameter $ k $ of the wild-type COVID-19, as well as the relative transmissibility of the Delta variant and relative transmissibility among fully vaccinated individuals, from a very limited data. $ R_0 $ for the wild type of COVID-19 is estimated to be 3.78 (95% confidence interval [CI]: 3.72-3.83), with $ k = 0.236 $ (95% CI: 0.233-0.240). For the Delta variant, the relative transmissibility to the wild type is estimated to be 1.42 (95% CI: 0.94-1.90), which gives $ R_0 = 5.37 $ (95% CI: 3.55-7.21). Vaccine effectiveness, determined by the reduction in the number of secondary transmissions among fully vaccinated individuals, is estimated to be 91% (95% CI: 85%-97%). The present study highlights that basic reproduction numbers can be accurately estimated from the distribution of minor outbreak data, and these data can provide further insightful epidemiological estimates including the dispersion parameter and vaccine effectiveness regarding the prevention of transmission.


Assuntos
COVID-19 , Humanos , Número Básico de Reprodução , COVID-19/epidemiologia , SARS-CoV-2/genética , Surtos de Doenças
17.
Virus ; 72(1):31-38, 2022.
Artigo em Japonês | Ichushi | ID: covidwho-2040962
18.
J Theor Biol ; 554: 111278, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2031496

RESUMO

The concept of doubling time has been increasingly used since the onset of the coronavirus disease 2019 (COVID-19) pandemic, but its characteristics are not well understood, especially as applied to infectious disease epidemiology. The present study aims to be a practical guide to monitoring the doubling time of infectious diseases. Via simulation exercise, we clarify the epidemiological characteristics of doubling time, allowing possible interpretations. We show that the commonly believed relationship between the doubling time and intrinsic growth rate in population ecology does not strictly apply to infectious diseases, and derive the correct relationship between the two. We examined the impact of varying (i) the growth rate, (ii) the starting point of counting cumulative number of cases, and (iii) the length of observation on statistical estimation of doubling time. It was difficult to recover values of growth rate from doubling time, especially when the growth rate was small. Starting time period is critical when the statistical estimation of doubling time occurs during the course of an epidemic. The length of observation was critical in determining the overall magnitude of doubling time, and when only the latest 1-2 weeks' data were used, the resulting doubling time was very short, regardless of the intrinsic growth rate r. We suggest that doubling time estimates of infectious disease epidemics should at a minimum be accompanied by descriptions of (i) the starting time at which the cumulative count is initiated and (ii) the length of observation.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias , SARS-CoV-2
19.
Math Biosci Eng ; 19(9): 9005-9017, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1988156

RESUMO

The Omicron variant spreads fastest as ever among the severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) we had so far. The BA.1 and BA.2 sublineages of Omicron are circulating worldwide and it is urgent to evaluate the transmission advantages of these sublineages. Using a mathematical model describing trajectories of variant frequencies that assumes a constant ratio in mean generation times and a constant ratio in effective reproduction numbers among variants, trajectories of variant frequencies in Denmark from November 22, 2021 to February 26, 2022 were analyzed. We found that the mean generation time of Omicron BA.1 is 0.44-0.46 times that of Delta and the effective reproduction number of Omicron BA.1 is 1.88-2.19 times larger than Delta under the epidemiological conditions at the time. We also found that the mean generation time of Omicron BA.2 is 0.76-0.80 times that of BA.1 and the effective reproduction number of Omicron BA.2 is 1.25-1.27 times larger than Omicron BA.1. These estimates on the ratio of mean generation times and the ratio of effective reproduction numbers have epidemiologically important implications. The contact tracing for Omicron BA.2 infections must be done more quickly than that for BA.1 to stop further infections by quarantine. In the Danish population, the control measures against Omicron BA.2 need to reduce 20-21% of additional contacts compared to that against BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Reprodução , SARS-CoV-2/genética
20.
Lancet Reg Health West Pac ; 28: 100571, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1983616

RESUMO

Background: In Japan, vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initiated on 17 February 2021, mainly using messenger RNA vaccines and prioritizing health care professionals. Whereas nationwide vaccination alleviated the coronavirus disease 2019 (COVID-19)-related burden, the population impact has yet to be quantified in Japan. We aimed to estimate the numbers of COVID-19 cases and deaths prevented that were attributable to the reduced risk among vaccinated individuals via a statistical modeling framework. Methods: We analyzed confirmed cases registered in the Health Center Real-time Information-sharing System on COVID-19 (3 March-30 November 2021) and publicly reported COVID-19-related deaths (24 March-30 November 2021). The vaccination coverage over this time course, classified by age and sex, was extracted from vaccine registration systems. The total numbers of prevented cases and deaths were calculated by multiplying the daily risk differences between unvaccinated and vaccinated individuals by the population size of vaccinated individuals. Findings: For both cases and deaths, the averted numbers were estimated to be the highest among individuals aged 65 years and older. In total, we estimated that 564,596 (95% confidence interval: 477,020-657,525) COVID-19 cases and 18,622 (95% confidence interval: 6522-33,762) deaths associated with SARS-CoV-2 infection were prevented owing to vaccination during the analysis period (i.e., fifth epidemic wave, caused mainly by the Delta variant). Female individuals were more likely to be protected from infection following vaccination than male individuals whereas more deaths were prevented in male than in female individuals. Interpretation: The vaccination program in Japan led to substantial reductions in the numbers of COVID-19 cases and deaths (33% and 67%, respectively). The preventive effect will be further amplified during future pandemic waves caused by variants with shared antigenicity. Funding: This project was supported by the Japan Science and Technology Agency; the Japan Agency for Medical Research and Development; the Japan Society for the Promotion of Science; and the Ministry of Health, Labour and Welfare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA